1,303 research outputs found

    Casimir forces beyond the proximity approximation

    Get PDF
    The proximity force approximation (PFA) relates the interaction between closely spaced, smoothly curved objects to the force between parallel plates. Precision experiments on Casimir forces necessitate, and spur research on, corrections to the PFA. We use a derivative expansion for gently curved surfaces to derive the leading curvature modifications to the PFA. Our methods apply to any homogeneous and isotropic materials; here we present results for Dirichlet and Neumann boundary conditions and for perfect conductors. A Pad\'e extrapolation constrained by a multipole expansion at large distance and our improved expansion at short distances, provides an accurate expression for the sphere-plate Casimir force at all separations.Comment: 4 pages, 1 figur

    Conformal Field Theory of Critical Casimir Interactions in 2D

    Get PDF
    Thermal fluctuations of a critical system induce long-ranged Casimir forces between objects that couple to the underlying field. For two dimensional (2D) conformal field theories (CFT) we derive an exact result for the Casimir interaction between two objects of arbitrary shape, in terms of (1) the free energy of a circular ring whose radii are determined by the mutual capacitance of two conductors with the objects' shape; and (2) a purely geometric energy that is proportional to conformal charge of the CFT, but otherwise super-universal in that it depends only on the shapes and is independent of boundary conditions and other details.Comment: 5 pages, 3 figure

    Casimir force driven ratchets

    Full text link
    We explore the non-linear dynamics of two parallel periodically patterned metal surfaces that are coupled by the zero-point fluctuations of the electromagnetic field between them. The resulting Casimir force generates for asymmetric patterns with a time-periodically driven surface-to-surface distance a ratchet effect, allowing for directed lateral motion of the surfaces in sizeable parameter ranges. It is crucial to take into account inertia effects and hence chaotic dynamics which are described by Langevin dynamics. Multiple velocity reversals occur as a function of driving, mean surface distance, and effective damping. These transport properties are shown to be stable against weak ambient noise.Comment: 4 pages, 3 figure

    First analytic correction beyond PFA for the electromagnetic field in sphere-plane geometry

    Full text link
    We consider the vacuum energy for a configuration of a sphere in front of a plane, both obeying conductor boundary condition, at small separation. For the separation becoming small we derive the first next-to-leading order of the asymptotic expansion in the separation-to-radius ratio \ep. This correction is of order \ep. In opposite to the scalar cases it contains also contributions proportional to logarithms in first and second order, \ep \ln \ep and \ep (\ln \ep)^2. We compare this result with the available findings of numerical and experimental approaches.Comment: 20 pages, 1 figur

    Casimir force between sharp-shaped conductors

    Full text link
    Casimir forces between conductors at the sub-micron scale cannot be ignored in the design and operation of micro-electromechanical (MEM) devices. However, these forces depend non-trivially on geometry, and existing formulae and approximations cannot deal with realistic micro-machinery components with sharp edges and tips. Here, we employ a novel approach to electromagnetic scattering, appropriate to perfect conductors with sharp edges and tips, specifically to wedges and cones. The interaction of these objects with a metal plate (and among themselves) is then computed systematically by a multiple-scattering series. For the wedge, we obtain analytical expressions for the interaction with a plate, as functions of opening angle and tilt, which should provide a particularly useful tool for the design of MEMs. Our result for the Casimir interactions between conducting cones and plates applies directly to the force on the tip of a scanning tunneling probe; the unexpectedly large temperature dependence of the force in these configurations should attract immediate experimental interest

    Material Dependence of the Wire-Particle Casimir Interaction

    Get PDF
    We study the Casimir interaction between a metallic cylindrical wire and a metallic spherical particle by employing the scattering formalism. At large separations, we derive the asymptotic form of the interaction. In addition, we find the interaction between a metallic wire and an isotropic atom, both in the non-retarded and retarded limits. We identify the conditions under which the asymptotic Casimir interaction does not depend on the material properties of the metallic wire and the particle. Moreover, we compute the exact Casimir interaction between the particle and the wire numerically. We show that there is a complete agreement between the numerics and the asymptotic energies at large separations. For short separations, our numerical results show good agreement with the proximity force approximation

    Casimir Forces: An Exact Approach for Periodically Deformed Objects

    Full text link
    A novel approach for calculating Casimir forces between periodically deformed objects is developed. This approach allows, for the first time, a rigorous non-perturbative treatment of the Casimir effect for disconnected objects beyond Casimir's original two-plate configuration. The approach takes into account the collective nature of fluctuation induced forces, going beyond the commonly used pairwise summation of two-body van der Waals forces. As an application of the method, we exactly calculate the Casimir force due to scalar field fluctuations between a flat and a rectangular corrugated plate. In the latter case, the force is found to be always attractive.Comment: 4 pages, 3 figure
    • …
    corecore